In contrast to most exercise cultures, the martial arts actively strive to develop both the inner and outer individual, guided by a holistic view of human nature. The union of mind and body lies fundamental to martial art philosophy and practice, which consists of both mental and physical exercises. The practice of meditation characterizes the martial arts as a psychophysical engagement, as opposed to a purely physical activity. Although diverse types of meditation exist, all meditative techniques attempt to focus attention in a nonanalytical way without discursive or discriminating thought. By muting the analytical, reasoning functions of the mind one achieves a sort of non-discriminatory or relaxed awareness. In the martial arts, this state has been given various descriptions such as "Satori," "enlightenment," or "Zanshin."
Eastern philosophers have
known for centuries that the practice of meditation allows the human mind
to transcend thinking processes into a state of thoughtless awareness.
Given the complicated structure of the brain, with its multitude of neurons,
infinite possibilities of synaptic connections, and numerous chemical mediators,
this transcendent state may one day have a physiological explanation. Indeed,
increasing scientific and popular interest in the Eastern practices of
meditation has accumulated significant empirical evidence about the physiological
modifications produced by the practice of meditation; these include metabolic,
autonomic, encephalographic, and psychological effects. These scientific
studies clearly show that the meditative state of awareness is distinct
from a normal everyday awareness bound by logic and reason, and validate
the traditional Eastern belief that mental function has a direct implication
on physical function.
In general, meditation produces a reduction in multiple biological systems, resulting in a state of relaxation. These changes are, in most studies, significantly different between meditating and non-meditating groups. Benson (1975) argues that this physiological response pattern is not unique to meditation per se, but is common to any passive relaxation procedure. Although some studies have found no physiological or overt behavioral differences between meditation and other relaxation techniques, it is significant to note that subjects report meditational experiences as more profound and enjoyable than their comparative control groups (Cauthen & Prymak 1977, Kohr 1977). These subjective differences may have critical relevance from a clinical or research perspective.
Scientific studies reveal
that meditation produces a specific physiological response pattern that
involves various biological systems. The mechanisms most frequently suggested
to mediate or produce meditative effects include metabolic, autonomic,
endocrine, neurological, and psychological observations. Precisely how
these mechanisms are involved in producing the final pattern of responses
is yet unclear. The vast complexity of biological organization indicates
that the physiological response to meditation probably occurs on a multidimensional,
interactive basis.
Oxygen consumption is generally regarded as a reliable index of physical activity and arousal. For example, exercise requires an increased consumption of oxygen by muscle. During this metabolic process, oxygen is converted to carbon dioxide, which is eliminated by the lungs. If the body is starved of oxygen, reduced oxygen consumption does not lead to a parallel reduction in carbon dioxide elimination because the cells continue to metabolize the remaining oxygen in the blood. Therefore, oxygen starvation causes a decrease in the concentration of oxygen and an increase in the concentration of carbon dioxide in arterial blood. The relative amount of oxygen and carbon dioxide in the blood is called the respiratory quotient. During normal respiratory processes, this quotient remains constant; in abnormal respiratory situations, however, the reduction in available oxygen and increase in carbon dioxide changes the quotient. Wallace et al (1971) found that during the practice of meditation the amount of carbon dioxide elimination drops in proportion to the amount of oxygen consumed; therefore, the respiratory quotient remains constant. In conclusion, the metabolic changes of meditation arise from a natural reduction in metabolic activity at the cellular level, not from a forced reduction of breathing.
Circulation, especially in
muscle and brain, is closely related to the metabolic requirements of tissues,
and is very sensitive and consistent in its response to behavior. A study
by Jevning et al (1996) illustrates an interesting redistribution in the
blood flow of meditators. Blood flow to the kidneys and liver declined
in practitioners, with a surprising increase in cardiac output. These changes
of blood flow imply a marked redistribution of blood flow during meditation.
It is hypothesized that most of the distributed circulation must be to
the brain, a hypothesis that has been supported by direct estimation of
increased relative cerebral blood flow (Herzog et al 1990, Jevning et al
1992, Jevning et al 1996). The redistribution of blood flow with an increase
in cardiac output has interesting significance for the pattern of metabolic
changes elicited by meditation; although the response to meditation is
hypometabolic overall, it appears likely that there is a concomitant increase
in the metabolism of certain tissues.
Galvanic skin response, or GSR, was used to measure recovery from stress; a study by Orme-Johnson (1973) showed that meditators recovered from stress more quickly than non-meditators. Specifically, habituation of the GSR to stress was faster for meditators than for controls, and meditators made fewer multiple responses during habituation, indicating greater stability in response to stress. In other experiments, meditators produced fewer spontaneous GSR than their non-meditating controls, both during and while out of meditation. Spontaneous GSR is defined as spontaneous fluctuations in skin resistance and the frequency of spontaneous GSR defines the lability of an individual to stress. For example, the frequency rises with anger, fear, and increased epinephrine and norepinephrine blood levels. Those individuals with lower frequencies of spontaneous GSR exhibit more effective behavior in a number of stressful situations, are less impulsive on motor tasks, and have quicker perceptions. Rapid GSR habituation and low levels of spontaneous GSR are reported in the literature to be correlated with physiological and behavioral characteristics associated with good mental health. Therefore, meditation benefits practitioners by decreasing the frequency of spontaneous GSR. In general, these studies indicate that meditators possess a more adaptive pattern of stress response than controls.
On another level, meditation
produces specific neural activation patterns involving decreased limbic
arousal in the brain (Schwartz 1975). Since the limbic system contains
the hypothalamus, which controls the autonomic nervous system, reduction
in limbic arousal may explain how meditation reduces stress and increases
autonomic stability to stress. Ultimately, meditation strengthens and enhances
the ability to cope with stress.
Certain studies have also found unique patterns of blood hormone levels and blood flow to a number of organs including the brain (Jevning & O'Halloran 1984). Increased levels of gamma aminobutyric acid (GABA), melatonin, and dehydroepiandrosterone sulfate (DHEA-S) have been reported (Glaser et al 1992, Elias & Wilson 1995, Massion et al 1995). Meditation is associated with changes in the secretion and release of several pituitary hormones. The hormonal changes induced by meditation mimic the effects of the inhibitory neurotransmitter GABA. Elias and Wilson (1995) hypothesize that meditation produces its anxiolytic effects by promoting GABA action in specific areas of the brain, via a mechanism similar to the effects of synthetic anxiolytic and tranquilizing agents. Melatonin has been associated with a variety of biologic functions important in maintaining health and preventing disease, and the serum level of the adrenal androgen DHEA-S has also been associated with measures of health and stress. For example, increased levels of DHEA-S has been connected with a reduction in age-related disorders such as cardiovascular diseases and breast cancer. DHEA-S excretion also decreases in times of stress; since meditators have been shown to have an attenuated autonomic response to stressors (Orme-Johnson 1973), the higher DHEA-S levels found in during meditation may provide protection against stressor stimulation of the adrenal gland.
That the physical effects
of meditation persist after the meditation period itself has ended is demonstrated
by the fact that hypertension can be effectively controlled by meditation
alone without the use of anti-hypertensive drugs (Schneider et al 1995).
Meditation has also been shown to have long-term effects on the endocrine
system (Werner et al 1986). Another recent study (Zamarra et al 1996) reveals
that meditators have a general increased exercise tolerance and maximal
cardiac workload as compared to non-meditators.
Studies of brain physiology during meditation have most frequently employed the electroencephalograph (EEG) for the measurement of brain wave electrical activity. With most meditative practices the EEG patterns exhibit a slowing and synchronization of brain waves, with alpha waves predominating. More advanced practitioners of meditation demonstrate an even greater slowing of their brain waves, with the possible emergence of theta wave patterns.[FN4] These patterns are consistent with deep relaxation. Alpha rhythm is the classical EEG correlate for a state of relaxed wakefulness, also described as relaxed vigilance (Niedermeyer & Da Silva 1993). Indeed, emotional tension attenuates or blocks the alpha rhythm. Theta activity is associated with emotional processes and indicates relative maturity of the mechanisms linking the cortex, the thalamus, and the hypothalamus; theta rhythm also occurs during a state of maximal awareness (Niedermeyer & Da Silva 1993). Apparently, an alpha wave pattern is most conducive to creativity and to the assimilation of new concepts, while the theta responseseems to be a stage at which the mind is capable of deep insights and intuition. It is significant to note that practiced meditators can continue to exhibit alpha and theta waves after the meditation period has ended (Wallace et al 1971).
One study compared different types of breathing during meditation and discovered that diaphragmatic, or deep breathing was associated more with an EEG alpha response than thoracic breathing (Timmons et al 1972). Meditative traditions place a great deal of importance on breathing; indeed, breath becomes the object of awareness in most methods. Specifically, Taoist and Zen traditions of meditation have historically placed great value in abdominal breathing, consistent with the popular belief that the vital center, or hara, is located in the abdomen (Huard 1971). The study by Timmons and collaborators validates the merit of deep abdominal breathing.
The cortex of the brain is popularly believed to consist of two halves, the left and right hemispheres. Although simplistic, activities such as speech, logical thinking, analysis, sense of time are thought to function in the left hemisphere, while the ability to recognize faces and comprehend maps is thought to function in the right hemisphere. On the physiological level, it has been demonstrated that the two hemispheres of the cortex are specialized for different modes of information-processing; the left hemisphere operates primarily in a verbal, intellectual, sequential mode, while the right hemisphere operates primarily in a spatial oriented mode. The right hemisphere concerns space more than time, and intuition more than logic or language. The right lobe also houses the purported center of motor skills connected with spatial awareness. Most people, under scientific measurement, demonstrate a marked preponderance towards left hemisphere usage.
Several authors hypothesize that systems of meditation alter consciousness by inhibiting cognitive functions associated with the dominant or left cortical hemisphere. Ornstein (1975), for example, states that meditation "turns off" the verbal, linear, analytic style of information processing associated with the normal waking state. By inhibiting the left cortical hemisphere, the sense of time and logic no longer dominate consciousness during meditation. In association with this repression of the left hemisphere occurs a hypothesized shift to the right hemispheric manner of experience, described as holistic, receptive, and beyond language or logic. Since it is nonlinear, the right cortical hemisphere devalues the concept of cause and effect. Davidson (1976) argues that meditation leads to the development of right hemisphere associated abilities. This assertion has been verified by several research projects; meditators show faster reaction times on simple visual reaction time tasks, thus demonstrating that meditation facilitates right hemisphere specific abilities (Appelle & Oswald 1974, Holt et al 1978, Pagano & Frumkin 1977). Furthermore, EEG alpha and theta wave coherence is most marked in the right cortical hemisphere during the practice of meditation (Gaylord et al 1989).
Other analyses suggest the
existence of synchronization patterns both between corresponding areas
of the two cortical hemispheres and within individual hemispheres (Glueck
& Stroebel 1978). Some tests indicate that the EEG activation patterns
in meditators display a greater flexibility in shifting between hemispheres
in response to the demands of specific tasks (Bennet & Trinder 1977);
this represents an integration of the left and right hemispheres of the
brain, synchronizing the logical with the intuitive.
Other psychological consequences of meditation include decreased anger aroused in high-anger situations (Dua & Swinden 1992) and an increased concentration for mental as well as physical tasks (Dhume & Dhume 1991). Indeed, Davidson et al (1976) found that experienced meditators had significantly increased attentional absorption and that attentional absorption increased as the length of meditation experience increased. Long-term meditators appear to possess a more developed ability to voluntarily control attention.
A general profile of psychological
well-being and perceptual sensitivity emerges from various studies on meditation.
Some of the more commonly reported experiences include amplified perceptual
clarity, widened range of psychological insights, and greater openness
to experience.[FN7] As Walsh writes (1984), "Sensitivity
and clarity frequently seem enhanced following a meditation sitting or
retreat. Thus, for example, at these times it seems that I can discriminate
visual forms and outlines more clearly. It also feels as though empathy
is significantly increased and that I am more aware of other people's subtle
behaviors, vocal intonations, etc., as well as my own affective responses
to them." One of the fundamental objective observations of the enhanced
perceptual sensitivity of meditators is a decrease in both absolute and
discrimination sensory thresholds[FN8]; these include
a more subtle awareness of previously known concepts and an increased perception
of previously unrecognized phenomena. Thus, both subjective and objective
examinations agree that meditation enhances perceptual sensitivity.
Ultimately, the greatest achievement in the martial arts is the simultaneous refinement of mind and body. The special training of consciousness effectively regulates every biological system of the body as well as its technical and mechanical facilities. Cultivation of the mind leads to cultivation of the body, leading to further cultivation of the mind and so on, eventually attaining an exquisite level of cooperation and coordination between the two.
FN1 Reduced heart
rate -- Wallace 1970, Wallace et al 1971, Delmonte 1984, Zeier 1984, Sudsuang
et al 1991, Telles et al 1995 Decreased Blood Pressure -- Wallace
et al 1971, Wallace et al 1983, Delmonte 1984, Sudsuang et al 1991, Schneider
et al 1995 Decreased oxygen consumption -- Wallace 1970, Allison
1970, Wallace et al 1971, Hirai 1974, Fenwick et al 1977, Zeier 1984, Wilson
et al 1987, Benson et al 1990 Decreased carbon dioxide generation
by muscle -- Wallace 1970, Wallace et al 1971, Wilson et al 1987, Jevning
et al 1992
FN2 Wallace 1970, Wallace et al 1971, Orme-Johnson 1973, Delmonte 1984, Telles et al 1995
FN3 Kolb 1974, Orme-Johnson et al 1976, Jedrczak et al 1986, Dhume & Dhume 1991, Telles et al 1994
FN4 Wallace 1970, Wallace et al 1971, Banquet 1973, Hirai 1974, Corby et al 1978, Dillbeck & Vesely 1986, Gaylord et al 1989, Jevning et al 1992
FN5 Osis et al 1973, Kohr 1977, Severtsen & Bruya 1986, Bogart 1991
FN6 Blasdell 1973, Orme-Johnson 1973, Appelle & Oswald 1974, Keller & Seraganian 1984, Severtsen & Bruya 1986, Gaylord et al 1989, Dhume & Dhume 1991, Jin 1992, Tsai & Crockett 1993, Janowiak & Hackman 1994, Elias & Wilson 1995, Telles et al 1995
FN7 Banquet 1973, Osis et al 1973, Shapiro 1980, Walsh 1984, Brown et al 1984
FN8 Davidson et al 1976,
Brown et al 1984, Freed 1989, Colby 1991
Allison J. Respiratory
change during transcendental meditation. Lancet 1:833-4, Apr 1970
Appelle S & Oswald LE.
Simple reaction time as a function of alertness and prior mental
activity. Perceptual & Motor Skills 38:1263-8, 1974
Banquet JP. Spectral analysis
of the EEG in meditation. Electroencephalography & Clinical Neurophysiology
35: 143-51, 1973
Bennet JE & Trinder J.
Hemispheric laterality and cognitive style associated with transcendental
meditation. Psychophysiology 14:293-6, 1977
Benson H. The Relaxation
Response. New York: William Morrow & Co, 1975
Benson H, Malhotra MS, Goldman
RF, Jacobs GD & Hopkins PJ. Three case reports of the metabolic and
electroencephalographic changes during advanced Buddhist meditation techniques.
Behav Med 16(2):90-5, Summer 1990
Blasdell KS. The effects
of transcendental meditation technique upon a complex perceptual-motor
task. In K. Kannelakos and J. Lucas (Eds.), The Psychobiology of Transcendental
Meditation: A Literature Review. Menlo Park: Stanford Research Institute,
1973.
Bogart G. The Use of Meditation
in Psychotherapy: A Review of the Literature. Amer J Psychotherapy 45(3):383-412,
Jul 1991
Brown D, Forte M & Dysart
M. Visual sensitivity and mindfulness meditation. Perceptual & Motor
Skills 58(3):775-84, Jun 1984
Cauthen N & Prymak C.
Meditation versus Relaxation. J Consulting and Clinical Psychology 45(3):496-7,
1977
Colby F. An analogue study
of the initial carryover effects of meditation, hypnosis, and relaxation
using native college students. Biofeedback Self Regulation 16(2):157 65,
Jun 1991
Corby JC, Roth WT & Zarzone
VP. Psychophysiological correlates of the practice of tantric yoga meditation.
Arch Gen Psychiatry 35:571-80, 1978
Davidson JM. The physiology
of meditation and mystical states of consciousness. Perspectives Biol Med
19:345-79, 1976
Delmont MM. Physiological
responses during meditation and rest. Biofeedback Self Regulation 9(2):181-200,
Jun 1984
Dhume RR & Dhume RA.
A comparative study of the driving effects of dextroamphetamine and yogic
meditation on muscle control for the performance of balance on balance
board. Indian J Physiol Pharmacology 35(3):191-4, Jul 1991
Dillbeck MC & Vesely
SA. Participation in the transcendental meditation program and frontal
EEG coherence during concept learning. International J Neuroscience 29(1-2):45-55,
Mar 1986
Dua JK & Swinden ML.
Effectiveness of negative-thought reduction, meditation and placebo training
treatment in reducing anger. Scandinavian J Psychology 33(2):135-46, 1992
Elias AN & Wilson AF.
Serum hormonal concentrations following transcendental meditation: potential
role of gamma aminobutyric acid. Med Hypotheses 44(4):287-91, Apr 1995
Fenwick PB, Donaldson S,
Gillis L, Bushman J, Fenton GW, Perry I, Tilsley C & Serafinowicz H.
Metabolic and EEG Changes During Transcendental Meditation: An Explanation.
Biological Psychology 5(2):101-18, 1977
Freed S. Induced Specific
Immunological Unresponsiveness & Conditioned behavioral Reflexes, In
Functional Isomorphism-Meditation and Conditioned Specific Unresponsiveness.
International J Neuroscience 44(3-4)275-81, Feb 1989
Gaylord C, Orme-Johnson D
& Travis F. The Effects of the Transcendental Meditation Technique
and Progressive Muscle Relaxation on EEG Coherence, Stress Reactivity,
and Mental Health in Black Adults. International J Neuroscience 46(1):77-86,
May 1989
Gelderloos P, Hermans HG,
Ahlscrom HH & Jacoby R. Transcendence and psychological Health:
Studies
with Long-Term Participants of the Transcendental Meditation and TM-Sidhi
Program. J Psychology 124(2):177-97, Mar 1990
Glaser JL, Brind JL, Vogelman
JH, Eisner MJ, Dillbeck MC, Wallace RK Chopra D & Orentreich N.
Elevated
Serum Dehydroepiandrosterone Sulfate Levels in Practitioners of the Transcendental
Meditation and TM-Sidhi programs. J Behavior Med 15(4):327-41, Aug 1992
Glueck BC & Stroebel
CF. Meditation in the Treatments of Psychiatric Illness. In A. Sugarman
& R. Tarter (Eds.), Expanding Dimensions of Consciousness. New York:
Springer, 1978
Herzog H, Lele VR, Kuwert
T, Langen KJ, Kops ER & Feinendegen LE. Changed pattern of Regional
Glucose Metabolism During Yoga Meditative Relaxation. Neuropsychobiology
23(4):182-7, 1990-91
Hirai T. Psychophysiology
of Zen. Tokyo: Igaku Shin, 1974
Hjelle LA. Transcendental
Meditation and Psychological Health. Perceptual & Motor Skills 39:623-8,
1974
Holt WR, Caruso JL &
Riley JB. Transcendental Meditation Versus pseudo-Meditation on Visual
Choice Reaction Time. Perceptual & Motor Skills 46:726, 1978
Huard P. Oriental Methods
of Mental and Physical Fitness: The Complete Book of Meditation, Kinesitherapy
and Martial Arts in China, India and Japan. New York: Funk & Wagnalls,
1971
Janowiak JJ & Hackman
R. Meditation and College Students' Self-Actualization and Rated Stress.
Psychol Rep 75(2):1007-10, Oct 1994
Jedrczak A, Toomey M &
Clements G. The TM-Sidhi Programme, Age, and Brief Tests of Perceptual-Motor
Speed and Nonverbal Intelligence. J Clinical Psychology 42(1):161-4, Jan
1986
Jevning R, Anand R, Beidebach
M & Fernando G. Effects of Regional Cerebral Blood Flow on Transcendental
Meditation. Physiol Behavior 59(3):399-402, Mar 1996
Jevning R & O'Halloran
JP. Metabolic Effects of Transcendental Meditation: Toward a New Paradigm
of Neurobiology. In D. Shapiro & R. Walsh (Eds.), Meditation: Classical
and Contemporary Perspectives. New York: Aldine Publishing Co., 1984
Jevning R, Wallace RK &
Beidebach M. The Physiology of Meditation: A Wakeful Hypometabolic Integrated
Response. Neuroscience Biobehavior Review 16(3):415-24, Fall 1992
Jin P. Efficacy of Tai Chi,
Brisk Walking, Meditation, and Reading in Reducing Mental and Emotional
Stress. J Psychosomatic Research 36(4):361-70, May 1992
Keller S & Seraganian
P. Physical Fitness Level and Autonomic Reactivity to Psychosocial Stress.
J Psychosomatic Research 28(4):279-87, 1984
Kohr E. Dimensionality in
the Meditative Experience: A Replication. J Transpersonal Psychology 9(2):193-203,
1977
Kolb DA. Improved Reaction
Time Following Transcendental Meditation. In D.P. Kanellakos & J.S.
Lukas (Eds.), The Psychobiology of Transcendental Meditation: A Literature
Review. Menlo Park: W.A. Benjamin, 1974
Massion AO, Teas J, Hebert
JR, Wertheimer MD & Kabat-Zinn J. Meditation, Melatonin and Breast/Prostate
Cancer: Hypothesis and Preliminary Data. Med Hypotheses 44(1):39-46, Jan
1995
Mills PJ, Schneider RH, Hill
D, Walton KG & Wallace RK. Beta-Adrenergic Receptor Sensitivity in
Subjects Practicing Transcendental Meditation. J Psychosomatic Research
34(1):29-33, 1990
Niedermeyer E & Da Silva
FL. Electroencephalograpy: Basic Principles, Clinical Applications &
Related Fields, 3rd ed. Baltimore: Williams & Wilkins, 1993
Orme-Johnson DW. Autonomic
Stability and Transcendental Meditation. Psychosomatic Med 35:341-9, 1973
Orme-Johnson DW, Kolb D &
Herbert JR. An Experimental Analysis of the Transcendental Meditation Technique
on Reaction Time. In D.W. Orme-Johnson & J.T. Farrow (Eds.), Scientific
Research on the Transcendental Meditation Program: Collected Papers, Vol
1. Livingston Manor: Maharishi International Press, 1977
Ornstein R. The Psychology
of Consciousness. New York: Pelican Books, 1975
Osis K, Bokert E & Carlson
ML. Dimensions of the Meditative Experience. J Transpersonal Psychology
5(1):109-35, 1973
Pagano R & Frumkin L.
The Effect of Transcendental Meditation on Right hemispheric
Functioning. Biofeedback
& Self-Regulation. Chicago: Aldine, 1977
Robertson DW. The Short and
Long Range Effects of the Transcendental Meditation technique on Fractionated
Reaction Time. J Sports Med Physical Fitness 23(1):113-20, Mar 1983
Schneider RH, Staggers F,
Alexander CN, Sheppard W, Rainforth M, Kondwani K, Smith S & King CG.
A Randomised Controlled Trial of Stress Reduction for Hypertension in Older
African Americans. Hypertension 26(5):820-7, Nov 1995
Schwartz G. Biofeedback,
Self-Regulation, and the Patterning of Physiological Processes. American
Scientist 63:314-25, 1975
Severtsen B & Bruya MA.
Effects of Meditation and Aerobic Exercise on EEG Patterns. J Neuroscience
Nursing 18(4):206-10, Aug 1986
Shapiro DH. Meditation: Self-Regulation
Strategy & Altered State of Consciousness. New York: Aldine Publishing
Co., 1980
Sudsuang R, Chentanez V &
Veluvan K. Effect of Buddhist Meditation on Serum Cortisol and Total Protein
Levels, Blood Pressure, Pulse Rate, Lung Volume & Reaction Time. Physiology
Behavior 50(3):543-8, Sep 1991
Telles S, Hanumanthaiah BH,
Nagarathna R & Nagendra HR. Plasticity of Motor Control Systems Demonstrated
by Yoga Training. Indian J Physiol Pharmacology 38(2):143-4, Apr 1994
Telles S, Nagarathna R &
Nagendra HR. Autonomic Changes During "OM" Meditation. Indian J Physiol
Pharmacology 39(4):418-20, Oct 1995
Timmons B, Salamy J, Kamiya
J & Girton D. Abdominal, Thoracic Respiratory Movements and Levels
of Arousal. Psychonomic Science 27:173-5, 1972.
Tsai SL & Crockett MS.
Effects of Relaxation Training, Combining Imagery, and
Meditation on the Stress
Level of Chinese Nurses Working in Modern Hospitals in Taiwan. Issues Mental
Health Nursing 14(1):51-66, Jan-Mar 1993
Wallace RK. Physiological
Effects of Transcendental Meditation. Science 167:1751-4, 1970
Wallace RK, Benson H &
Wilson A. A Wakeful Hypometabolic Physiologic State. Am J Physiol 221:795-9,
1971
Wallace RK, Silver J, Mills
PJ, Dillbeck MC & Wagoner DE. Systolic Blood Pressure and Long Term
Practice of the Transcendental Meditation and TM-Sidhi Program: Effects
of TM on Systolic Blood Pressure. Psychosomatic Med 45(1):41-6, Mar 1983
Walsh R. Initial Meditative
Experiences. In D. Shapiro & R. Walsh, (Eds.), Meditation: Classical
and Contemporary Perspectives. New York: Aldine Publishing Co., 1984
Warshal D. Effects of the
Transcendental Meditation Technique on Normal and Jendrassik Reflex Time.
Perceptual & Motor Skills 50:1103-6, 1980
Werner OR, Wallace RK, Charles
B, Janssen G, Stryker T & Chalmers RA. Long-Term Endocrinologic Changesin
Subjects Practicing the Transcendental Meditation and TM-Sidhi program.
Psychosomatic Med 48(1-2):59-66, Jan-Feb 1986
Wilson AF, Jevning R &
Guich S. Marked Reduction of Forearm Carbon Dioxide Production During States
of Decreased Metabolism. Physiology Behavior 41(4):347-52, 1987
Zamarra JW, Schneider RH,
Besseghini I, Robinson DK & Salerno JW. Usefulness of the Transcendental
Meditation Program in the Treatment of Patients with Coronary Artery Disease.
Amer J Cardiology 77(10):867-70, Apr 1996
Zeier H. Arousal Reduction
with Biofeedback-Supported Respiratory Meditation. Biofeedback Self Regulation
9(4):497-508, Dec 1984
All content copyright ©
D.C. Taekwondo, 1999–2000. ALL RIGHTS RESERVED. Reproduction of any material
in whole or in part in any form or medium is prohibited without express
written permission from D.C. Taekwondo. info@dctkd.org The D.C. Taekwondo
web site is designed & maintained by Charles A. Buhs chuck@dctkd.org